If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6n^2+3n-21=0
a = 6; b = 3; c = -21;
Δ = b2-4ac
Δ = 32-4·6·(-21)
Δ = 513
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{513}=\sqrt{9*57}=\sqrt{9}*\sqrt{57}=3\sqrt{57}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-3\sqrt{57}}{2*6}=\frac{-3-3\sqrt{57}}{12} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+3\sqrt{57}}{2*6}=\frac{-3+3\sqrt{57}}{12} $
| -6(-2y+6)-3y=3(y-7)-1 | | a/7=-13 | | 60+42.95x=25+49,95x | | x^2-5+4x=10x+11 | | 6x(3x+45)=180 | | x+4/10=8/5+x-5/4 | | 5w+3-3(-2w-1)=5(w-2) | | 4^y^-9=7 | | 1(2x-1)=15 | | -x-8=-5x+4 | | -2x-176=-15x+123 | | 4y-29=-5(y-5) | | 2x+20*20*20*20=3x-5*5*5*5 | | (1/5)(2x-1)=3 | | 24x+0.12=8x+0.16 | | -5(w+3)=4w-9+3(3w+3) | | 10x÷7=15 | | x3-2x2+14x+85=0 | | -7(w+8)=3w-26 | | p^2=-19p-90 | | 1/2y-5=1/7y | | -3(5x-2)+3x=3(x+3) | | 4x^-2-7x^-1-2=0 | | -5-8(7+2p)=-37+8p | | |3x-3|=14 | | 4(2+n)=4(4+2n) | | -7t=-6t−9 | | 1/27-5=1/7y | | 6x-12x=-8 | | 7r+8=7(r-8)+8r | | -5(n+2)=-1+2(8n+6) | | 3+2(4-6n)=-38-5n |